Nonlinear integral equations for thermodynamics of the $s /(r+1)$ Uimin-Sutherland model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2003 J. Phys. A: Math. Gen. 361493
(http://iopscience.iop.org/0305-4470/36/5/321)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.89
The article was downloaded on 02/06/2010 at 17:20

Please note that terms and conditions apply.

Nonlinear integral equations for thermodynamics of the $s l(r+1)$ Uimin-Sutherland model

Zengo Tsuboi
Graduate School of Mathematical Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8914, Japan
E-mail: ztsuboi@poisson.ms.u-tokyo.ac.jp

Received 14 November 2002
Published 22 January 2003
Online at stacks.iop.org/JPhysA/36/1493

Abstract

We derive traditional thermodynamic Bethe ansatz (TBA) equations for the $s l(r+1)$ Uimin-Sutherland model from the T-system of the quantum transfer matrix. These TBA equations are identical to the those from the string hypothesis. Next we derive a new family of nonlinear integral equations (NLIEs). In particular, a subset of these NLIEs forms a system of NLIEs which contains only a finite number of unknown functions. For $r=1$, this subset of NLIEs reduces to Takahashi's NLIE for the $X X X$ spin chain. A relation between the traditional TBA equations and our new NLIEs is clarified. Based on our new NLIEs, we also calculate the high-temperature expansion of the free energy.

PACS numbers: $02.30 . \mathrm{Rz}, 02.30 . \mathrm{Ik}, 05.50 .+\mathrm{q}, 05.70 .-\mathrm{a}$
Mathematics Subject Classification: 82B23, 45G15, 82B20, 17B80

1. Introduction

Thermodynamic Bethe ansatz (TBA) equations have been used to investigate thermodynamics of various types of solvable lattice model; see, for example, [1]. Traditionally, TBA equations have been derived by the string hypothesis [2, 3]. Several years ago, TBA equations for the supersymmetric $t-J$ model and the supersymmetric extended Hubbard model were derived [4] from the T-system (a system of functional relations among transfer matrices) for the quantum transfer matrix (QTM) [5-9], which is independent of the string hypothesis. Later, TBA equations for the $X X Z$ model in the regime $|\Delta|<1$ [10], the $\operatorname{osp}(1 \mid 2)$ model [11], and the $\operatorname{osp}(1 \mid 2 s)$ model [12] were derived by similar procedures in [4]. In addition, the TBA equation in [10] was analytically continued [13] to that for $|\Delta| \geqslant 1$. These TBA equations contain an infinite (or finitely many) number of unknown functions, and thus are not always easily treated. It is significant to simplify the TBA equations to tractable integral equations which contain only a finite number of unknown functions.

In the context of the QTM method, for models related to algebras of rank one or two, nonlinear integral equations (NLIEs) with finite numbers of unknown functions were derived by Klümper and his collaborators [9, 14-18]. Although their NLIEs give the same free energy as the TBA equations, the derivations need trial and error for each model, which prevents their extension to higher rank case.

Another type of NLIE with only one unknown function was recently proposed for the XXZ spin chain by Takahashi [19]. We can also derive [13] Takahashi's NLIE from the T-system [20, 21] of the QTM. In view of this fact, we have derived [22] NLIEs with a finite number of unknown functions from our T-system [23] for the $\operatorname{osp}(1 \mid 2 s)$ model for arbitrary rank s. In this paper, we further derive NLIEs for the $s l(r+1)$ Uimin-Sutherland model [24, 25] with only a finite number (the number of rank r) of unknown functions from the T-system [21]. This is the first explicit derivation of this type of NLIE for a vertex model associated with $s l(r+1)$ for arbitrary rank r

In section 2, we introduce the $s l(r+1)$ Uimin-Sutherland model, and define the QTM and the T-system [21] related to this model. In section 3, we derive traditional TBA equations from the T-system defined in section 2 without using the string hypothesis. In section 4, we derive the NLIEs (4.6) and (4.7), which are our main results. The normalized fused QTMs $\left\{\mathcal{T}_{m}^{(a)}(v)\right\}\left(a \in\{1,2, \ldots, r\} ; m \in \mathbb{Z}_{\geqslant 1}\right.$: the fusion degree of the model) in the Trotter limit $N \rightarrow \infty$ defined in section 2 play the role of the unknown functions of these NLIEs. The traditional TBA equations (3.11), (3.13) and (3.16) are integral equations on the variables $\left\{Y_{m}^{(a)}(v)\right\}$, which connect with those $\left\{\mathcal{T}_{m}^{(a)}(v)\right\}$ for our new NLIEs (4.6) through the relation (3.1) $\left(\operatorname{cf} \mathcal{T}_{m}^{(a)}(v)=\lim _{N \rightarrow \infty} \widetilde{T}_{m}^{(a)}(v)\right)$. In this sense, we may view our new NLIEs (4.6) as TBA equations on the variables $\left\{\mathcal{T}_{m}^{(a)}(v)\right\}$. For the evaluation of the free energy, we need only the fundamental one $\mathcal{T}_{1}^{(1)}(v)$. Therefore, adopting an infinite number of fused QTMs $\left\{\mathcal{T}_{m}^{(a)}(v)\right\}$ as unknown functions seems to be superfluous. In fact, we see that these NLIEs (4.6) for $m=1$ form a closed set of equations (4.7), which contains only a finite number of unknown functions $\left\{\mathcal{T}_{1}^{(a)}(v)\right\}_{1 \leqslant a \leqslant r}$. For $r=1$, this set of NLIEs (4.7) reduces to Takahashi's NLIE [19] for the $X X X$ spin chain. On the other hand, NLIEs (4.6) for $m \geqslant 2$ have never been considered before, and thus they are new equations even in the case $r=1$. Using our new NLIEs (4.7), we calculate the high-temperature expansion of the free energy in section 5. Section 6 is devoted to concluding remarks. Many calculations in this paper are parallel with those for the $\operatorname{osp}(1 \mid 2 s)$ case [12, 22], but we describe the calculations concisely, not so much for the reader's convenience, but because of the basic importance of the Uimin-Sutherland model.

2. T-system and QTM method

We introduce the $s l(r+1)$ Uimin-Sutherland model [24, 25], and we define the QTM [5-9] and the T-system [21] for this model. QTM analyses of the Uimin-Sutherland model can be found in [4, 18]. The classical counterpart of the $s l(r+1)$ Uimin-Sutherland model is a special case of the Perk-Schultz model, whose R-matrix [26] is given as

$$
\begin{equation*}
R_{\mu \nu}^{a b}(v)=v \delta_{a b} \delta_{\mu \nu}+\delta_{a \nu} \delta_{\mu b} \tag{2.1}
\end{equation*}
$$

where $v \in \mathbb{C} ; a, b, v, \mu \in\{1,2, \ldots, r+1\}$. We define the QTM $t_{1}^{(1)}(v)=\left(\left(t_{1}^{(1)}\right)_{\left\{\alpha_{1}, \ldots, \alpha_{N}\right\}}^{\left\{\beta_{1}, \ldots, \beta_{N}\right\}}(v)\right)$ as
$\left(t_{1}^{(1)}\right)_{\left\{\alpha_{1}, \ldots, \alpha_{N}\right\}}^{\left\{\beta_{1}, \ldots, \beta_{N}\right\}}(v)=\sum_{\left\{v_{k}\right\}} \exp \left(\frac{\mu_{\nu_{1}}}{T}\right) \prod_{k=1}^{\frac{N}{2}} R_{\alpha_{2 k-1}, \beta_{2 k-1}}^{\nu_{2 k-1}, \nu_{2 k}}(u+\mathrm{i} v) \widetilde{R}_{\alpha_{2 k}, \beta_{2 k}}^{v_{2 k}, v_{2 k+1}}(u-\mathrm{i} v)$.

Here $\widetilde{R}_{\alpha, \beta}^{\mu, \nu}(v)=R_{\mu, v}^{\beta, \alpha}(v) ; N$ is the Trotter number and is assumed to be even; $u=-\frac{J}{T N}$ (T is the temperature; J is a coupling constant, where $J>0(J<0)$ corresponds to the anti-ferromagnetic (ferromagnetic) regime); $\left\{\mu_{a}\right\}$ are chemical potentials; and the Boltzmann constant is set to 1 . The free energy per site is expressed in terms of the largest eigenvalue $T_{1}^{(1)}(0)$ of the QTM (2.2) at $v=0$:

$$
\begin{equation*}
f=-T \lim _{N \rightarrow \infty} \log T_{1}^{(1)}(0) \tag{2.3}
\end{equation*}
$$

The eigenvalue formula $T_{1}^{(1)}(v)$ of the QTM (2.2) is imbedded into $T_{m}^{(a)}(v)$ for a fusion hierarchy of the QTM (cf Bazhanov-Reshetikhin formula in [29])

$$
\begin{equation*}
T_{m}^{(a)}(v)=\sum_{\left\{d_{j, k}\right\}} \prod_{j=1}^{a} \prod_{k=1}^{m} z\left(d_{j, k} ; v-\frac{\mathrm{i}}{2}(a-m-2 j+2 k)\right) \tag{2.4}
\end{equation*}
$$

where the summation is taken over $d_{j, k} \in\{1,2, \ldots, r+1\}$ such that $d_{j, k} \prec d_{j+1, k}$ and $d_{j, k} \leq d_{j, k+1}(1 \prec 2 \prec \cdots \prec r+1)$. The functions $\{z(a ; v)\}$ are defined as
$z(a ; v)=\psi_{a}(v) \frac{Q_{a-1}\left(v-\frac{\mathrm{i}}{2}(a+1)\right) Q_{a}\left(v-\frac{\mathrm{i}}{2}(a-2)\right)}{Q_{a-1}\left(v-\frac{\mathrm{i}}{2}(a-1)\right) Q_{a}\left(v-\frac{\mathrm{i}}{2} a\right)} \quad$ for $\quad a \in\{1,2, \ldots, r+1\}$
where $Q_{a}(v)=\prod_{k=1}^{M_{a}}\left(v-v_{k}^{(a)}\right) ; M_{a} \in \mathbb{Z}_{\geqslant 0} ; Q_{0}(v)=Q_{r+1}(v)=1$. The vacuum parts are given as follows

$$
\begin{equation*}
\psi_{a}(v)=\mathrm{e}^{\frac{\mu_{a}}{T}} \phi_{+}\left(v+\mathrm{i} \delta_{a, r+1}\right) \phi_{-}\left(v-\mathrm{i} \delta_{a, 1}\right) \quad \text { for } \quad a \in\{1,2, \ldots, r+1\} \tag{2.6}
\end{equation*}
$$

where $\phi_{ \pm}(v)=(v \pm \mathrm{i} u)^{\frac{N}{2}} .\left\{v_{k}^{(a)}\right\}$ is a solution of the Bethe ansatz equation (BAE)
$\frac{\psi_{a}\left(v_{k}^{(a)}+\frac{\mathrm{i}}{2} a\right)}{\psi_{a+1}\left(v_{k}^{(a)}+\frac{\mathrm{i}}{2} a\right)}=-\frac{Q_{a-1}\left(v_{k}^{(a)}+\frac{\mathrm{i}}{2}\right) Q_{a}\left(v_{k}^{(a)}-\mathrm{i}\right) Q_{a+1}\left(v_{k}^{(a)}+\frac{\mathrm{i}}{2}\right)}{Q_{a-1}\left(v_{k}^{(a)}-\frac{\mathrm{i}}{2}\right) Q_{a}\left(v_{k}^{(a)}+\mathrm{i}\right) Q_{a+1}\left(v_{k}^{(a)}-\frac{\mathrm{i}}{2}\right)}$

$$
\begin{equation*}
\text { for } k \in\left\{1,2, \ldots, M_{a}\right\} \text { and } a \in\{1,2, \ldots, r\} \text {. } \tag{2.7}
\end{equation*}
$$

We can rewrite equation (2.7) as the Reshetikhin-Wiegmann BAE [27] in terms of the representation theoretical data:
$-\prod_{j=1}^{N}\left(\frac{v_{k}^{(a)}-\frac{\mathrm{i}}{2} b_{j}^{(a)}-w_{j}^{(a)}}{v_{k}^{(a)}+\frac{\mathrm{i}}{2} b_{j}^{(a)}-w_{j}^{(a)}}\right)=\zeta_{a} \prod_{b=1}^{r} \frac{Q_{b}\left(v_{k}^{(a)}-\frac{\mathrm{i}}{2}\left(\alpha_{a} \mid \alpha_{b}\right)\right)}{Q_{b}\left(v_{k}^{(a)}+\frac{\mathrm{i}}{2}\left(\alpha_{a} \mid \alpha_{b}\right)\right)} \quad$ for $\quad a \in\{1,2, \ldots, r\}$.
Here, $\left(\alpha_{a} \mid \alpha_{b}\right)=2 \delta_{a, b}-\delta_{a, b+1}-\delta_{a, b-1}$ is the Cartan matrix of $s l(r+1) ;\left\{b_{j}^{(a)}\right\}$ are the Dynkin labels which characterize the quantum space: $\left[b_{2 j}^{(1)}, b_{2 j}^{(2)}, \ldots, b_{2 j}^{(r)}\right]=[0,0, \ldots, 1]$, $\left[b_{2 j-1}^{(1)}, b_{2 j-1}^{(2)}, \ldots, b_{2 j-1}^{(r)}\right]=[1,0, \ldots, 0] ;\left\{w_{j}^{(a)}\right\}$ are inhomogeneity parameters: $w_{2 j-1}^{(a)}=$ $\delta_{a, 1} \mathrm{i} u, w_{2 j}^{(a)}=-\delta_{a, r} \mathrm{i}\left(u+\frac{1}{2} g\right) ; g=r+1$ (the dual Coxeter number); $\zeta_{a}=\mathrm{e}^{-\frac{\mu_{a}-\mu_{a+1}}{T}}$. Note that the Dynkin labels for the even and odd sites are those for conjugate representations each other. The non-negative integers $\left\{M_{a}\right\}$ should satisfy the condition, $\sum_{j=1}^{N} b_{j}^{(a)}-\sum_{b=1}^{r} M_{b}\left(\alpha_{b} \mid \alpha_{a}\right)=$ $\frac{N}{2}\left(\delta_{a, 1}+\delta_{a, r}\right)+M_{a-1}-2 M_{a}+M_{a+1} \in \mathbb{Z}_{\geqslant 0}$, where $M_{0}=M_{r+1}=0$. For the row-to-row transfer matrix, the above parameters take the values: $\left[b_{j}^{(1)}, b_{j}^{(2)}, \ldots, b_{j}^{(r)}\right]=[1,0, \ldots, 0]$; $w_{j}^{(a)}=0 ; \zeta_{a}=1$.

For $a \in\{1,2, \ldots, r\}$ and $m \in \mathbb{Z}_{\geqslant 1}$, we normalize equation (2.4) as $\widetilde{T}_{m}^{(a)}(v)=$ $T_{m}^{(a)}(v) / \widetilde{\mathcal{N}}_{m}^{(a)}(v)$, where

$$
\begin{gather*}
\widetilde{\mathcal{N}}_{m}^{(a)}(v)=\frac{\phi_{-}\left(v-\frac{a+m}{2} \mathrm{i}\right) \phi_{+}\left(v+\frac{a+m}{2} \mathrm{i}\right)}{\phi_{-}\left(v-\frac{a-m}{2} \mathrm{i}\right) \phi_{+}\left(v+\frac{a-m}{2} \mathrm{i}\right)} \prod_{j=1}^{a} \prod_{k=1}^{m} \phi_{-}\left(v-\frac{a-m-2 j+2 k}{2} \mathrm{i}\right) \\
\times \phi_{+}\left(v-\frac{a-m-2 j+2 k}{2} \mathrm{i}\right) . \tag{2.9}
\end{gather*}
$$

Note that the poles of $\widetilde{T}_{m}^{(a)}(v)$ from the functions $\left\{Q_{b}(v)\right\}$ (dress part) are spurious under the BAE (2.7). We can show that $\widetilde{T}_{m}^{(a)}(v)$ satisfies the following functional relation

$$
\begin{gather*}
\widetilde{T}_{m}^{(a)}\left(v+\frac{\mathrm{i}}{2}\right) \widetilde{T}_{m}^{(a)}\left(v-\frac{\mathrm{i}}{2}\right)=\widetilde{T}_{m+1}^{(a)}(v) \widetilde{T}_{m-1}^{(a)}(v)+\widetilde{T}_{m}^{(a-1)}(v) \widetilde{T}_{m}^{(a+1)}(v) \\
\text { for } a \in\{1,2, \ldots, r\} \quad \text { and } \quad m \in \mathbb{Z}_{\geqslant 1} \tag{2.10}
\end{gather*}
$$

where

$$
\begin{align*}
& \widetilde{T}_{0}^{(a)}(v)=1 \quad \text { for } \quad a \in \mathbb{Z}_{\geqslant 1} \\
& \widetilde{T}_{m}^{(0)}(v)=\frac{\phi_{-}\left(v+\frac{m}{2} \mathrm{i}\right) \phi_{+}\left(v-\frac{m}{2} \mathrm{i}\right)}{\phi_{-}\left(v-\frac{m}{2} \mathrm{i}\right) \phi_{+}\left(v+\frac{m}{2} \mathrm{i}\right)} \text { for } m \in \mathbb{Z}_{\geqslant 1} \tag{2.11}\\
& \widetilde{T}_{m}^{(r+1)}(v)=\mathrm{e}^{\frac{m\left(\mu_{+}+\mu_{2}+\cdots+\mu_{r+1}\right)}{T}} \text { for } m \in \mathbb{Z}_{\geqslant 1} .
\end{align*}
$$

Except for the vacuum part (the part made from the function (2.6)), this equation has the same form as the $s l(r+1) T$-system in [21].

3. Traditional TBA equations

In this section, we transform the T-system (2.10) into the traditional TBA equations by the standard procedure [20, 4]. A similar argument in relation to Stokes multipliers can be found in section 5 in [33].

For $m \in \mathbb{Z}_{\geqslant 1}$ and $a \in\{1,2, \ldots, r\}$, we define functions:

$$
\begin{equation*}
Y_{m}^{(a)}(v)=\frac{\widetilde{T}_{m+1}^{(a)}(v) \widetilde{T}_{m-1}^{(a)}(v)}{\widetilde{T}_{m}^{(a-1)}(v) \widetilde{T}_{m}^{(a+1)}(v)}=\frac{T_{m+1}^{(a)}(v) T_{m-1}^{(a)}(v)}{T_{m}^{(a-1)}(v) T_{m}^{(a+1)}(v)} . \tag{3.1}
\end{equation*}
$$

By using the T-system (2.10), we can show that equations (3.1) satisfy the following Y-system

$$
\begin{array}{r}
Y_{m}^{(a)}\left(v+\frac{\mathrm{i}}{2}\right) Y_{m}^{(a)}\left(v-\frac{\mathrm{i}}{2}\right)=\frac{\left(1+Y_{m+1}^{(a)}(v)\right)\left(1+Y_{m-1}^{(a)}(v)\right)}{\prod_{b=1}^{r}\left(1+\left(Y_{m}^{(b)}(v)\right)^{-1}\right)^{I_{a b}}} \\
\text { for } \quad a \in\{1,2, \ldots, r\} \text { and } m \in \mathbb{Z} \geqslant 1 \tag{3.2}
\end{array}
$$

where $I_{a b}=\delta_{a, b+1}+\delta_{a, b-1}, Y_{0}^{(a)}(v)=0$.
From a numerical analysis for finite N, u, r, we expect that a one-string solution (for every colour) in the sector $\frac{N}{2}=M_{1}=M_{2}=\cdots=M_{r}$ of the BAE (2.7) provides the largest eigenvalue of the QTM (2.2) at $v=0$ at least for the case, $\mu_{1}=\mu_{2}=\cdots=\mu_{r+1}=0$ (cf figure 1). Hereafter we consider only this one-string solution. The following conjecture will be valid for this one-string solution (cf figures 2 and 3).

Conjecture 3.1. For small $u(|u| \ll 1)$, $a \in\{1,2, \ldots, r\}$ and $m \in \mathbb{Z}_{\geqslant 1}$, every zero $\left\{\tilde{z}_{m}^{(a)}\right\}$ of $\widetilde{T}_{m}^{(a)}(v)$ is located near the lines $\operatorname{Im} v= \pm \frac{m+a}{2}$ at least for the case, $\mu_{1}=\mu_{2}=\cdots=\mu_{r+1}=0$.

Based on this conjecture, we establish the ANZC (analytic, nonzero and constant asymptotics in the limit $|v| \rightarrow \infty$) property in some domain for the functions (3.1). We find that $Y_{m}^{(a)}(v)$ has constant asymptotics

$$
\begin{equation*}
\lim _{|v| \rightarrow \infty} Y_{m}^{(a)}(v)=\frac{Q_{m-1}^{(a)} Q_{m+1}^{(a)}}{Q_{m}^{(a-1)} Q_{m}^{(a+1)}} \tag{3.3}
\end{equation*}
$$

where $\left\{Q_{m}^{(a)}\right\}$ is given by equation (2.4) with a formal setting $Q_{a}(v)=\phi_{ \pm}(v)=1 .\left\{Q_{m}^{(a)}\right\}$ is also characterized as a solution of the Q-system [28]

$$
\begin{equation*}
\left(Q_{m}^{(a)}\right)^{2}=Q_{m-1}^{(a)} Q_{m+1}^{(a)}+Q_{m}^{(a-1)} Q_{m}^{(a+1)} \quad \text { for } \quad a \in\{1,2, \ldots, r\} \quad \text { and } \quad m \in \mathbb{Z}_{\geqslant 1} \tag{3.4}
\end{equation*}
$$

Figure 1. Location of the roots of the BAE for the $\operatorname{sl}(3)$ case ($N=12, u=-0.05, \mu_{1}=\mu_{2}=$ $\mu_{3}=0$), which gives the largest eigenvalue of the QTM $t_{1}^{(1)}(v)$ at $v=0$. Both colour one roots $\left\{v_{k}^{(1)}\right\}$ and colour two roots $\left\{v_{k}^{(2)}\right\}$ form six one-strings.

Figure 2. Location of zeros of $\widetilde{T}_{m}^{(1)}(v)$ for the $s l(3)$ case $\left(m=1,2,3, N=12, u=-0.05, \mu_{1}=\right.$ $\mu_{2}=\mu_{3}=0$). The zeros recede from the physical strip $\operatorname{Im} v \in\left[-\frac{1}{2}, \frac{1}{2}\right]$ as m increases.
where $Q_{0}^{(a)}=Q_{m}^{(0)}=1 ; Q_{m}^{(r+1)}=\mathrm{e}^{\frac{m\left(\mu_{1}+\mu_{2}+\cdots+\mu_{r+1}\right)}{T}}$. Note that $Q_{m}^{(a)}$ coincides with the character of m th symmetric a th anti-symmetric tensor representation $V\left(m \Lambda_{a}\right)$ of $g l(r+1)$ if we set $\frac{\mu_{a}}{T} \rightarrow \epsilon_{a}$, where $\left\{\epsilon_{a}\right\}$ are orthonormal bases of the dual space of the Cartan subalgebra.

Figure 3. Location of zeros of $\widetilde{T}_{m}^{(2)}(v)$ for the $s l(3)$ case $\left(m=1,2,3, N=12, u=-0.05, \mu_{1}=\right.$ $\mu_{2}=\mu_{3}=0$). The zeros recede from the physical strip $\operatorname{Im} v \in\left[-\frac{1}{2}, \frac{1}{2}\right]$ as m increases.

In particular, for the $\mu_{1}=\mu_{2}=\cdots=\mu_{r+1}=0$ case, $Q_{m}^{(a)}$ is given by

$$
\begin{equation*}
Q_{m}^{(a)}=\left(\frac{(m+g)!m!}{(m+a)!(m+g-a)!}\right)^{m} \prod_{k=1}^{m}\left\{\frac{(k+a)(k+g-a)}{k(k+g)}\right\}^{k} \tag{3.5}
\end{equation*}
$$

and equation (3.3) has the form

$$
\begin{equation*}
\lim _{|v| \rightarrow \infty} Y_{m}^{(a)}(v)=\frac{m(g+m)}{a(g-a)} . \tag{3.6}
\end{equation*}
$$

Equation (3.5) is the dimension of $V\left(m \Lambda_{a}\right)$. Based on the conjecture 3.1 and equation (3.3), we can see that the functions $1+Y_{m}^{(a)}(v), 1+\left(Y_{m}^{(a)}(v)\right)^{-1}$ in the domain $\operatorname{Im} v \in[-\delta, \delta]$ $(0<\delta \ll 1)$ and $Y_{m}^{(a)}(v)$ for $(a, m) \neq(1,1)$ in the domain $\operatorname{Im} v \in\left[-\frac{1}{2}, \frac{1}{2}\right]$ (physical strip) have the ANZC property at least for the case $\mu_{1}=\cdots=\mu_{r+1}=0$. However, $Y_{1}^{(1)}(v)$ has zeros of order $N / 2$ at $\pm \mathrm{i}\left(\frac{1}{2}+u\right)$ if $u<0(J>0)$, poles of order $N / 2$ at $\pm \mathrm{i}\left(\frac{1}{2}-u\right)$ if $u>0$ $(J<0)$ in the physical strip. Thus, we should modify $Y_{m}^{(a)}(v)$ as
$\widetilde{Y}_{m}^{(a)}(v)=Y_{m}^{(a)}(v)\left\{\tanh \frac{\pi}{2}\left(v+\mathrm{i}\left(\frac{1}{2} \pm u\right)\right) \tanh \frac{\pi}{2}\left(v-\mathrm{i}\left(\frac{1}{2} \pm u\right)\right)\right\}^{\mp \frac{N \delta_{a, 1} \delta_{m, 1}}{2}}$
where the sign \pm is equal to that of $-u$. By using the relation

$$
\begin{equation*}
\tanh \frac{\pi}{4}(v+\mathrm{i}) \tanh \frac{\pi}{4}(v-\mathrm{i})=1 \tag{3.8}
\end{equation*}
$$

we modify the left-hand side (lhs) of the Y-system (3.2) as
$\widetilde{Y}_{m}^{(a)}\left(v-\frac{\mathrm{i}}{2}\right) \widetilde{Y}_{m}^{(a)}\left(v+\frac{\mathrm{i}}{2}\right)=\frac{\left(1+Y_{m+1}^{(a)}(v)\right)\left(1+Y_{m-1}^{(a)}(v)\right)}{\prod_{b=1}^{r}\left(1+\left(Y_{m}^{(b)}(v)\right)^{-1}\right)^{I_{a b}}}$
for $m \in \mathbb{Z} \geqslant 1 \quad$ and $a \in\{1,2, \ldots, r\}$.

This modified Y-system has the ANZC property. Then we can transform equation (3.9) into nonlinear integral equations by a standard procedure:

$$
\begin{align*}
\log Y_{m}^{(a)}(v)= & \pm \frac{N \delta_{a 1} \delta_{m 1}}{2} \log \left\{\tanh \frac{\pi}{2}\left(v+\mathrm{i}\left(\frac{1}{2} \pm u\right)\right) \tanh \frac{\pi}{2}\left(v-\mathrm{i}\left(\frac{1}{2} \pm u\right)\right)\right\} \\
& +K * \log \left\{\frac{\left(1+Y_{m-1}^{(a)}\right)\left(1+Y_{m+1}^{(a)}\right)}{\prod_{b=1}^{r}\left(1+\left(Y_{m}^{(b)}\right)^{-1}\right)^{I_{a b}}}\right\}(v) \\
& \text { for } a \in\{1,2, \ldots, r\} \text { and } m \in \mathbb{Z}_{\geqslant 1} \tag{3.10}
\end{align*}
$$

where $Y_{0}^{(a)}(v)=0$ and $*$ is the convolution. After the Trotter limit $N \rightarrow \infty$ with $u=-\frac{J}{N T}$, we obtain a TBA equation

$$
\begin{gather*}
\log Y_{m}^{(a)}(v)=-\frac{\pi J \delta_{a 1} \delta_{m 1}}{T \cosh \pi v}+K * \log \left\{\frac{\left(1+Y_{m-1}^{(a)}\right)\left(1+Y_{m+1}^{(a)}\right)}{\prod_{b=1}^{r}\left(1+\left(Y_{m}^{(b)}\right)^{-1}\right)^{I_{a b}}}\right\}(v) \\
\text { for } a \in\{1,2, \ldots, r\} \quad \text { and } \quad m \in \mathbb{Z} \geqslant 1 \tag{3.11}
\end{gather*}
$$

where $Y_{0}^{(a)}(v):=0$ and the kernel is

$$
\begin{equation*}
K(v)=\frac{1}{2 \cosh \pi v} . \tag{3.12}
\end{equation*}
$$

We can also rewrite equation (3.11) as
$-\frac{\pi J \delta_{a 1} \delta_{m 1}}{T \cosh \pi v}=\sum_{n=1}^{\infty} K^{m, n} * \log \left(1+Y_{n}^{(a)}\right)(v)-\sum_{b=1}^{r} \sum_{n=1}^{\infty} J_{a, b}^{m, n} * \log \left(1+\left(Y_{n}^{(b)}\right)^{-1}\right)(v)$
where

$$
\begin{align*}
& K^{m, n}(v)=\delta_{m, n} \delta(v)-\left(\delta_{m, n-1}+\delta_{m, n+1}\right) K(v) \\
& J_{a, b}^{n, k}(v)=\left(\delta_{a, b} \delta(v)-\left(\delta_{a, b-1}+\delta_{a, b+1}\right) K(v)\right) \delta_{n, k} \tag{3.14}
\end{align*}
$$

We find that the TBA equation (3.13) coincides with that from the string hypothesis in [29] after suitable modification. By using the following relations

$$
\begin{align*}
& A^{a, d}(v)=\sum_{l=1}^{\min (a, d)} G_{|a-d|+2 l-1}(v) \\
& G_{a}(v)=\frac{1}{g} \frac{\sin \frac{(g-a) \pi}{g}}{\cos \frac{(g-a) \pi}{g}+\cosh \frac{2 \pi v}{g}} \\
& \widehat{A}^{a, d}(k)=\int_{-\infty}^{\infty} \mathrm{d} v A^{a, d}(v) \mathrm{e}^{-\mathrm{i} k v}=\frac{\sinh \left(\frac{\min (a, d)}{2} k\right) \sinh \left(\frac{g-\min (a, d)}{2} k\right)}{\sinh \left(\frac{k}{2}\right) \sinh \left(\frac{g}{2} k\right)} \tag{3.15}\\
& \sum_{l=1}^{r} \widehat{A}^{m, l}(k) \widehat{K}^{l, n}(k)=\frac{\delta_{m, n}}{2 \cosh \left(\frac{k}{2}\right)} \\
& \widehat{K}^{m, n}(k)=\delta_{m, n}-\frac{\delta_{m, n-1}+\delta_{m, n+1}}{2 \cosh \frac{k}{2}}
\end{align*}
$$

we can also rewrite the TBA equation (3.11) as
$\log Y_{m}^{(a)}(v)=-\frac{2 \pi J \delta_{m, 1}}{T} G_{a}(v)+\sum_{b=1}^{r} A^{a, b} * \log \left\{\frac{\left(1+Y_{m-1}^{(b)}\right)\left(1+Y_{m+1}^{(b)}\right)}{\prod_{d=1}^{r}\left(1+Y_{m}^{(d)}\right)^{I_{b d}}}\right\}(v)$

$$
\text { for } a \in\{1,2, \ldots, r\} \quad \text { and } \quad m \in \mathbb{Z}_{\geqslant 1}
$$

where $Y_{0}^{(a)}(v)=0$. This TBA equation (3.16) does not contain $\left(Y_{m}^{(a)}\right)^{-1}$, which contrasts with equations (3.11) and (3.13). We can derive the following relation from equations (2.10), (3.1) and (3.15):

$$
\begin{equation*}
\log \widetilde{T}_{1}^{(1)}(v)=\sum_{b=1}^{r} G_{b} * \log \left(1+Y_{1}^{(b)}\right)(v)-2 N \int_{0}^{\infty} \mathrm{d} k \frac{\mathrm{e}^{-\frac{1}{2} k} \sinh (k u) \cos (k v) \sinh \left(\frac{g-1}{2} k\right)}{k \sinh \left(\frac{g}{2} k\right)} . \tag{3.17}
\end{equation*}
$$

After the Trotter limit $N \rightarrow \infty$ with $u=-\frac{J}{N T}$, we have the free energy per site:

$$
\begin{align*}
& f=-T \lim _{N \rightarrow \infty} \log T_{1}^{(1)}(0)=J-T \lim _{N \rightarrow \infty} \log \widetilde{T}_{1}^{(1)}(0) \\
& \quad=J\left\{\frac{2}{g}\left(\gamma+\psi\left(\frac{1}{g}\right)\right)+1\right\}-T \sum_{a=1}^{r} \int_{-\infty}^{\infty} \mathrm{d} v G_{a}(v) \log \left(1+Y_{1}^{(a)}(v)\right) \tag{3.18}
\end{align*}
$$

where $\psi(z)$ is the digamma function

$$
\begin{equation*}
\psi(z)=\frac{\mathrm{d}}{\mathrm{~d} z} \log \Gamma(z) \quad \gamma=-\psi(1) . \tag{3.19}
\end{equation*}
$$

4. New nonlinear integral equations

It has been pointed out [13] that Takahashi's NLIE for the $X X Z$-model [19] can be rederived from the T-system of the QTM. In this section, we derive our new NLIEs (4.6) and (4.7) from the T-system (2.10).
$\widetilde{T}_{m}^{(a)}(v)$ has poles only at $\pm \tilde{\beta}_{m}^{(a)}: \tilde{\beta}_{m}^{(a)}=\frac{m+a}{2} \mathrm{i}+\mathrm{i} u$. These poles are of order $N / 2$ at most. In addition, $\lim _{|v| \rightarrow \infty} \widetilde{T}_{m}^{(a)}(v)=Q_{m}^{(a)}$ is a finite number (cf equation (3.5)). Thus we must put

$$
\begin{equation*}
\widetilde{T}_{m}^{(a)}(v)=Q_{m}^{(a)}+\sum_{j=1}^{\frac{N}{2}}\left\{\frac{b_{m, j}^{(a)}}{\left(v-\tilde{\beta}_{m}^{(a)}\right)^{j}}+\frac{\bar{b}_{m, j}^{(a)}}{\left(v+\tilde{\beta}_{m}^{(a)}\right)^{j}}\right\} \tag{4.1}
\end{equation*}
$$

where the coefficients $b_{m, j}^{(a)}, \bar{b}_{m, j}^{(a)} \in \mathbb{C}$ are given as follows:
$b_{m, j}^{(a)}=\oint_{C_{m}^{(a)}} \frac{\mathrm{d} v}{2 \pi \mathrm{i}} \widetilde{T}_{m}^{(a)}(v)\left(v-\tilde{\beta}_{m}^{(a)}\right)^{j-1} \quad \bar{b}_{m, j}^{(a)}=\oint_{\bar{C}_{m}^{(a)}} \frac{\mathrm{d} v}{2 \pi \mathrm{i}} \widetilde{T}_{m}^{(a)}(v)\left(v+\tilde{\beta}_{m}^{(a)}\right)^{j-1}$.
Here the contour $C_{m}^{(a)}$ is a counterclockwise closed loop around $\tilde{\beta}_{m}^{(a)}$ which does not surround $-\tilde{\beta}_{m}^{(a)}$; the contour $\bar{C}_{m}^{(a)}$ is a counterclockwise closed loop around $-\tilde{\beta}_{m}^{(a)}$ which does not surround $\tilde{\beta}_{m}^{(a)}$. Using the T-system (2.10), we can modify (4.2) as
$b_{m, j}^{(a)}=\oint_{C_{m}^{(a)}} \frac{\mathrm{d} v}{2 \pi \mathrm{i}}\left\{\frac{\widetilde{T}_{m-1}^{(a)}\left(v-\frac{\mathrm{i}}{2}\right) \widetilde{T}_{m+1}^{(a)}\left(v-\frac{\mathrm{i}}{2}\right)}{\widetilde{T}_{m}^{(a)}(v-\mathrm{i})}+\frac{\widetilde{T}_{m}^{(a-1)}\left(v-\frac{\mathrm{i}}{2}\right) \widetilde{T}_{m}^{(a+1)}\left(v-\frac{\mathrm{i}}{2}\right)}{\widetilde{T}_{m}^{(a)}(v-\mathrm{i})}\right\}\left(v-\widetilde{\beta}_{m}^{(a)}\right)^{j-1}$
$\bar{b}_{m, j}^{(a)}=\oint_{\bar{C}_{m}^{(a)}} \frac{\mathrm{d} v}{2 \pi \mathrm{i}}\left\{\frac{\widetilde{T}_{m-1}^{(a)}\left(v+\frac{\mathrm{i}}{2}\right) \widetilde{T}_{m+1}^{(a)}\left(v+\frac{\mathrm{i}}{2}\right)}{\widetilde{T}_{m}^{(a)}(v+\mathrm{i})}+\frac{\widetilde{T}_{m}^{(a-1)}\left(v+\frac{\mathrm{i}}{2}\right) \widetilde{T}_{m}^{(a+1)}\left(v+\frac{\mathrm{i}}{2}\right)}{\widetilde{T}_{m}^{(a)}(v+\mathrm{i})}\right\}\left(v+\widetilde{\beta}_{m}^{(a)}\right)^{j-1}$.

Substituting equation (4.3) into equation (4.1), we obtain

$$
\begin{align*}
\widetilde{T}_{m}^{(a)}(v)=Q_{m}^{(a)} & +\oint_{C_{m}^{(a)}} \frac{\mathrm{d} y}{2 \pi \mathrm{i}} \frac{1-\left(\frac{y}{v-\tilde{\beta}_{m}^{(a)}}\right)^{\frac{N}{2}}}{v-y-\tilde{\beta}_{m}^{(a)}}\left\{\frac{\widetilde{T}_{m-1}^{(a)}\left(y+\widetilde{\beta}_{m}^{(a)}-\frac{\mathrm{i}}{2}\right) \widetilde{T}_{m+1}^{(a)}\left(y+\tilde{\beta}_{m}^{(a)}-\frac{\mathrm{i}}{2}\right)}{\widetilde{T}_{m}^{(a)}\left(y+\widetilde{\beta}_{m}^{(a)}-\mathrm{i}\right)}\right. \\
& \left.+\frac{\widetilde{T}_{m}^{(a-1)}\left(y+\widetilde{\beta}_{m}^{(a)}-\frac{\mathrm{i}}{2}\right) \widetilde{T}_{m}^{(a+1)}\left(y+\tilde{\beta}_{m}^{(a)}-\frac{\mathrm{i}}{2}\right)}{\widetilde{T}_{m}^{(a)}\left(y+\widetilde{\beta}_{m}^{(a)}-\mathrm{i}\right)}\right\} \\
& +\oint_{\bar{C}_{m}^{(a)}} \frac{\mathrm{d} y}{2 \pi \mathrm{i}} \frac{1-\left(\frac{y}{v+\tilde{\beta}_{m}^{(a)}}\right)^{\frac{N}{2}}}{v-y+\tilde{\beta}_{m}^{(a)}}\left\{\frac{\widetilde{T}_{m-1}^{(a)}\left(y-\tilde{\beta}_{m}^{(a)}+\frac{\mathrm{i}}{2}\right) \widetilde{T}_{m+1}^{(a)}\left(y-\tilde{\beta}_{m}^{(a)}+\frac{\mathrm{i}}{2}\right)}{\widetilde{T}_{m}^{(a)}\left(y-\tilde{\beta}_{m}^{(a)}+\mathrm{i}\right)}\right. \\
& \left.+\frac{\widetilde{T}_{m}^{(a-1)}\left(y-\widetilde{\beta}_{m}^{(a)}+\frac{\mathrm{i}}{2}\right) \widetilde{T}_{m}^{(a+1)}\left(y-\widetilde{\beta}_{m}^{(a)}+\frac{\mathrm{i}}{2}\right)}{\widetilde{T}_{m}^{(a)}\left(y-\widetilde{\beta}_{m}^{(a)}+\mathrm{i}\right)}\right\} \\
& \text { for } a \in\{1,2, \ldots, r\} \quad \text { and } m \in \mathbb{Z} \geqslant 1 \tag{4.4}
\end{align*}
$$

where the contour $C_{m}^{(a)}\left(\bar{C}_{m}^{(a)}\right)$ is a counterclockwise closed loop around 0 which does not surround $-2 \tilde{\beta}_{m}^{(a)}\left(2 \tilde{\beta}_{m}^{(a)}\right)$. The first and second terms in the first bracket $\{\cdots\}$ in equation (4.4) have a common singularity at 0 ; while for $m=1$, this singularity from the first term disappears since $\widetilde{T}_{0}^{(a)}(y)=1$. Thus for $m=1$, the contribution to the contour integral from the first term in the first bracket $\{\cdots\}$ in equation (4.4) vanishes if the contour $C_{1}^{(a)}$ does not surround the singularity at $\tilde{z}_{1}^{(a)}-\tilde{\beta}_{1}^{(a)}+\mathrm{i}$ (cf conjecture 3.1). This is also the case with the second bracket $\{\cdots\}$ in equation (4.4). Therefore for $m=1$, equation (4.4) reduces to

$$
\begin{align*}
\widetilde{T}_{1}^{(a)}(v)=Q_{1}^{(a)} & +\oint_{C_{1}^{(a)}} \frac{\mathrm{d} y}{2 \pi \mathrm{i}} \frac{1-\left(\frac{y}{v-\tilde{\beta}_{1}^{(a)}}\right)^{\frac{N}{2}}}{v-y-\widetilde{\beta}_{1}^{(a)}} \frac{\widetilde{T}_{1}^{(a-1)}\left(y+\tilde{\beta}_{1}^{(a)}-\frac{\mathrm{i}}{2}\right) \widetilde{T}_{1}^{(a+1)}\left(y+\widetilde{\beta}_{1}^{(a)}-\frac{\mathrm{i}}{2}\right)}{\widetilde{T}_{1}^{(a)}\left(y+\tilde{\beta}_{1}^{(a)}-\mathrm{i}\right)} \\
& +\oint_{\bar{C}_{1}^{(a)}} \frac{\mathrm{d} y}{2 \pi \mathrm{i}} \frac{1-\left(\frac{y}{v+\tilde{\beta}_{1}^{(a)}}\right)^{\frac{N}{2}}}{v-y+\widetilde{\beta}_{1}^{(a)}} \frac{\widetilde{T}_{1}^{(a-1)}\left(y-\tilde{\beta}_{1}^{(a)}+\frac{\mathrm{i}}{2}\right) \widetilde{T}_{1}^{(a+1)}\left(y-\widetilde{\beta}_{1}^{(a)}+\frac{\mathrm{i}}{2}\right)}{\widetilde{T}_{1}^{(a)}\left(y-\tilde{\beta}_{1}^{(a)}+\mathrm{i}\right)} \\
& \text { for } a \in\{1,2, \ldots, r\} \tag{4.5}
\end{align*}
$$

where the contour $C_{1}^{(a)}\left(\bar{C}_{1}^{(a)}\right)$ is a counterclockwise closed loop around 0 which does not surround $\tilde{z}_{1}^{(a)}-\tilde{\beta}_{1}^{(a)}+\mathrm{i},-2 \tilde{\beta}_{1}^{(a)}\left(\tilde{z}_{1}^{(a)}+\tilde{\beta}_{1}^{(a)}-\mathrm{i}, 2 \tilde{\beta}_{1}^{(a)}\right)$. Now we take the Trotter limit $N \rightarrow \infty$ in equation (4.4):

$$
\begin{align*}
\mathcal{T}_{m}^{(a)}(v)=Q_{m}^{(a)} & +\oint_{C_{m}^{(a)}} \frac{\mathrm{d} y}{2 \pi \mathrm{i}} \frac{1}{v-y-\beta_{m}^{(a)}}\left\{\frac{\mathcal{T}_{m-1}^{(a)}\left(y+\beta_{m}^{(a)}-\frac{\mathrm{i}}{2}\right) \mathcal{T}_{m+1}^{(a)}\left(y+\beta_{m}^{(a)}-\frac{\mathrm{i}}{2}\right)}{\mathcal{T}_{m}^{(a)}\left(y+\beta_{m}^{(a)}-\mathrm{i}\right)}\right. \\
& \left.+\frac{\mathcal{T}_{m}^{(a-1)}\left(y+\beta_{m}^{(a)}-\frac{\mathrm{i}}{2}\right) \mathcal{T}_{m}^{(a+1)}\left(y+\beta_{m}^{(a)}-\frac{\mathrm{i}}{2}\right)}{\mathcal{T}_{m}^{(a)}\left(y+\beta_{m}^{(a)}-\mathrm{i}\right)}\right\} \\
& +\oint_{\bar{C}_{m}^{(a)}} \frac{\mathrm{d} y}{2 \pi \mathrm{i}} \frac{1}{v-y+\beta_{m}^{(a)}}\left\{\frac{\mathcal{T}_{m-1}^{(a)}\left(y-\beta_{m}^{(a)}+\frac{\mathrm{i}}{2}\right) \mathcal{T}_{m+1}^{(a)}\left(y-\beta_{m}^{(a)}+\frac{\mathrm{i}}{2}\right)}{\mathcal{T}_{m}^{(a)}\left(y-\beta_{m}^{(a)}+\mathrm{i}\right)}\right. \\
& \left.+\frac{\mathcal{T}_{m}^{(a-1)}\left(y-\beta_{m}^{(a)}+\frac{\mathrm{i}}{2}\right) \mathcal{T}_{m}^{(a+1)}\left(y-\beta_{m}^{(a)}+\frac{\mathrm{i}}{2}\right)}{\mathcal{T}_{m}^{(a)}\left(y-\beta_{m}^{(a)}+\mathrm{i}\right)}\right\} \\
& \text { for } a \in\{1,2, \ldots, r\} \quad \text { and } m \in \mathbb{Z}_{21} . \tag{4.6}
\end{align*}
$$

Here $\mathcal{T}_{m}^{(a)}(v):=\lim _{N \rightarrow \infty} \widetilde{T}_{m}^{(a)}(v) ; \beta_{m}^{(a)}:=\lim _{N \rightarrow \infty} \widetilde{\beta}_{m}^{(a)}=\frac{m+a}{2} \mathrm{i} ; \mathcal{T}_{m}^{(r+1)}(v)=\mathrm{e}^{\frac{m\left(\mu_{1}+\ldots+\mu_{r+1}\right)}{T}}$; $\mathcal{T}_{0}^{(a)}(v)=1 ; \mathcal{T}_{m}^{(0)}(v)=\exp \left(\frac{m J}{\left(v^{2}+\frac{m^{2}}{4}\right) T}\right)$; the contour $C_{m}^{(a)}\left(\bar{C}_{m}^{(a)}\right)$ is a counterclockwise closed loop around 0 which satisfies the condition $y \neq v-\beta_{m}^{(a)}\left(y \neq v+\beta_{m}^{(a)}\right)$ and does not surround $-2 \beta_{m}^{(a)}\left(2 \beta_{m}^{(a)}\right)$. In particular for $m=1$, we obtain a system of NLIEs, which contains only a finite number of unknown functions $\left\{\mathcal{T}_{1}^{(a)}(v)\right\}_{1 \leqslant a \leqslant r}$:

$$
\begin{align*}
\mathcal{T}_{1}^{(a)}(v)=Q_{1}^{(a)} & +\oint_{C_{1}^{(a)}} \frac{\mathrm{d} y}{2 \pi \mathrm{i}} \frac{\mathcal{T}_{1}^{(a-1)}\left(y+\beta_{1}^{(a)}-\frac{\mathrm{i}}{2}\right) \mathcal{T}_{1}^{(a+1)}\left(y+\beta_{1}^{(a)}-\frac{\mathrm{i}}{2}\right)}{\left(v-y-\beta_{1}^{(a)}\right) \mathcal{T}_{1}^{(a)}\left(y+\beta_{1}^{(a)}-\mathrm{i}\right)} \\
& +\oint_{\bar{C}_{1}^{(a)}} \frac{\mathrm{d} y}{2 \pi \mathrm{i}} \frac{\mathcal{T}_{1}^{(a-1)}\left(y-\beta_{1}^{(a)}+\frac{\mathrm{i}}{2}\right) \mathcal{T}_{1}^{(a+1)}\left(y-\beta_{1}^{(a)}+\frac{\mathrm{i}}{2}\right)}{\left(v-y+\beta_{1}^{(a)}\right) \mathcal{T}_{1}^{(a)}\left(y-\beta_{1}^{(a)}+\mathrm{i}\right)} \\
& \text { for } a \in\{1,2, \ldots, r\} . \tag{4.7}
\end{align*}
$$

Here $\mathcal{T}_{1}^{(r+1)}(v)=\mathrm{e}^{\frac{\mu_{1}+\ldots+\mu_{r+1}}{T}}$; the contour $C_{1}^{(a)}\left(\bar{C}_{1}^{(a)}\right)$ is a counterclockwise closed loop around 0 which satisfies the condition $y \neq v-\beta_{1}^{(a)}\left(y \neq v+\beta_{1}^{(a)}\right)$ and does not surround $z_{1}^{(a)}-\beta_{1}^{(a)}+\mathrm{i},-2 \beta_{1}^{(a)}\left(z_{1}^{(a)}+\beta_{1}^{(a)}-\mathrm{i}, 2 \beta_{1}^{(a)}\right) ; z_{1}^{(a)}=\lim _{N \rightarrow \infty} \tilde{z}_{1}^{(a)}$. We can calculate the free energy per site f by using equation (4.7) and the relation

$$
\begin{equation*}
f=J-T \log \mathcal{T}_{1}^{(1)}(0) \tag{4.8}
\end{equation*}
$$

We need not use equation (4.6) (for $m \in \mathbb{Z} \geqslant 2$) to obtain the free energy per site. In addition, $\left\{\mathcal{T}_{m}^{(a)}(v)\right\}_{1 \leqslant a \leqslant r ; m \in \mathbb{Z} \geqslant 1}$ is given in terms of the solution of equation (4.7) $\left\{\mathcal{T}_{1}^{(a)}(v)\right\}_{1 \leqslant a \leqslant r}$ based on a Jacobi-Trudi formula [29]. However, equation (4.6) has theoretical significance since it manifests the relation between our new NLIEs and the traditional TBA equations (3.11), (3.13) and (3.16). In fact, equations (4.6) and (4.7) are related to the traditional TBA equations (3.11), (3.13) and, (3.16) through the relation (3.1) in the Trotter limit.

5. High-temperature expansion

In this section, we calculate the high-temperature expansion of the free energy (4.8) for $r=1,2,3$ using our new NLIEs (4.7). As for the $X X X$-model case, the high-temperature expansion of the free energy is calculated [30] by Takahashi's NLIE up to order 100. We assume the following expansion for large T :

$$
\begin{equation*}
\mathcal{T}_{1}^{(a)}(v)=\exp \left(\sum_{n=0}^{\infty} b_{n}^{(a)}(v)\left(\frac{J}{T}\right)^{n}\right) \tag{5.1}
\end{equation*}
$$

In contrast with the $X X X$-model case [30], we need to further assume

$$
\begin{equation*}
b_{n}^{(a)}(v)=\sum_{j=0}^{n-1} \frac{c_{n, j}^{(a)} v^{2 j}}{\left(v^{2}+\frac{(a+1)^{2}}{4}\right)^{n}} \tag{5.2}
\end{equation*}
$$

where $c_{n, j}^{(a)} \in \mathbb{C}$. Substituting equation (5.1) into equation (4.7), we can obtain the coefficients $\left\{b_{n}^{(a)}(v)\right\}$. Here we just enumerate the first few of them. $b_{0}^{(a)}(v)$ has the form $b_{0}^{(a)}(v)=\log Q_{1}^{(a)}$.

Other coefficients are given as follows:
$s l(2)$ case

$$
\begin{align*}
& c_{1,0}^{(1)}=\frac{2 Q_{1}^{(2)}}{Q_{1}^{(1)^{2}}} \\
& c_{2,0}^{(1)}=\frac{3 Q_{1}^{(2)}}{Q_{1}^{(1)^{2}}}-\frac{6 Q_{1}^{(2)^{2}}}{Q_{1}^{(1)^{4}}} \\
& c_{2,1}^{(1)}=\frac{Q_{1}^{(2)}}{Q_{1}^{(1)^{2}}}-\frac{4 Q_{1}^{(2)^{2}}}{Q_{1}^{(1)^{4}}} \\
& c_{3,0}^{(1)}=\frac{10 Q_{1}^{(2)}}{3 Q_{1}^{(1)^{2}}}-\frac{18 Q_{1}^{(2)^{2}}}{Q_{1}^{(1)^{4}}}+\frac{80 Q_{1}^{(2)^{3}}}{3 Q_{1}^{(1)^{6}}} \tag{5.3}\\
& c_{3,1}^{(1)}=\frac{3 Q_{1}^{(2)}}{Q_{1}^{(1)^{2}}}-\frac{22 Q_{1}^{(2)^{2}}}{Q_{1}^{(1)^{4}}}+\frac{40 Q_{1}^{(2)^{3}}}{Q_{1}^{(1)^{6}}} \\
& c_{3,2}^{(1)}=\frac{Q_{1}^{(2)}}{Q_{1}^{(1)^{2}}}-\frac{8 Q_{1}^{(2)^{2}}}{Q_{1}^{(1)^{4}}}+\frac{16 Q_{1}^{(2)^{3}}}{Q_{1}^{(1)^{6}}} .
\end{align*}
$$

sl(3) case
$c_{1,0}^{(1)}=\frac{2 Q_{1}^{(2)}}{Q_{1}^{(1)^{2}}}$
$c_{2,0}^{(1)}=\frac{3 Q_{1}^{(2)}}{Q_{1}^{(1)^{2}}}-\frac{6 Q_{1}^{(2)^{2}}}{Q_{1}^{(1)^{4}}}+\frac{3 Q_{1}^{(3)}}{Q_{1}^{(1)^{3}}}$
$c_{2,1}^{(1)}=\frac{Q_{1}^{(2)}}{Q_{1}^{(1)^{2}}}-\frac{4 Q_{1}^{(2)^{2}}}{Q_{1}^{(1)^{4}}}+\frac{3 Q_{1}^{(3)}}{Q_{1}^{(1)^{3}}}$
$c_{3,0}^{(1)}=\frac{10 Q_{1}^{(2)}}{3 Q_{1}^{(1)^{2}}}-\frac{18 Q_{1}^{(2)^{2}}}{Q_{1}^{(1)^{4}}}+\frac{80 Q_{1}^{(2)^{3}}}{3 Q_{1}^{(1)^{6}}}+\frac{8 Q_{1}^{(3)}}{Q_{1}^{(1)^{3}}}-\frac{24 Q_{1}^{(2)} Q_{1}^{(3)}}{Q_{1}^{(1)^{5}}}$
$c_{3,1}^{(1)}=\frac{3 Q_{1}^{(2)}}{Q_{1}^{(1)^{2}}}-\frac{22 Q_{1}^{(2)^{2}}}{Q_{1}^{(1)^{4}}}+\frac{40 Q_{1}^{(2)^{3}}}{Q_{1}^{(1)^{6}}}+\frac{13 Q_{1}^{(3)}}{Q_{1}^{(1)^{3}}}-\frac{42 Q_{1}^{(2)} Q_{1}^{(3)}}{Q_{1}^{(1)^{5}}}$
$c_{3,2}^{(1)}=\frac{Q_{1}^{(2)}}{Q_{1}^{(1)^{2}}}-\frac{8 Q_{1}^{(2)^{2}}}{Q_{1}^{(1)^{4}}}+\frac{16 Q_{1}^{(2)^{3}}}{Q_{1}^{(1)^{6}}}+\frac{5 Q_{1}^{(3)}}{Q_{1}^{(1)^{3}}}-\frac{18 Q_{1}^{(2)} Q_{1}^{(3)}}{Q_{1}^{(1)^{5}}}$
$c_{1,0}^{(2)}=\frac{3 Q_{1}^{(3)}}{Q_{1}^{(1)} Q_{1}^{(2)}}$
$c_{2,0}^{(2)}=\frac{-27 Q_{1}^{(3)}}{2 Q_{1}^{(1)^{3}}}+\frac{9 Q_{1}^{(3)}}{Q_{1}^{(1)} Q_{1}^{(2)}}-\frac{9 Q_{1}^{(3)^{2}}}{2 Q_{1}^{(1)^{2}} Q_{1}^{(2)^{2}}}$
$c_{2,1}^{(2)}=\frac{-6 Q_{1}^{(3)}}{Q_{1}^{(1)^{3}}}+\frac{2 Q_{1}^{(3)}}{Q_{1}^{(1)} Q_{1}^{(2)}}$

$$
\begin{align*}
c_{3,0}^{(2)}= & \frac{-1377 Q_{1}^{(3)}}{16 Q_{1}^{(1)^{3}}}+\frac{171 Q_{1}^{(3)}}{8 Q_{1}^{(1)} Q_{1}^{(2)}}+\frac{243 Q_{1}^{(2)} Q_{1}^{(3)}}{2 Q_{1}^{(1)^{5}}}-\frac{27 Q_{1}^{(3)^{2}}}{Q_{1}^{(1)^{2}} Q_{1}^{(2)^{2}}} \\
& -\frac{81 Q_{1}^{(3)^{2}}}{16 Q_{1}^{(1)^{4}} Q_{1}^{(2)}}+\frac{9 Q_{1}^{(3)^{3}}}{Q_{1}^{(1)^{3}} Q_{1}^{(2)^{3}}} \\
c_{3,1}^{(2)}= & \frac{-135 Q_{1}^{(3)}}{2 Q_{1}^{(1)^{3}}}+\frac{12 Q_{1}^{(3)}}{Q_{1}^{(1)} Q_{1}^{(2)}}+\frac{108 Q_{1}^{(2)} Q_{1}^{(3)}}{Q_{1}^{(1)^{5}}}-\frac{6 Q_{1}^{(3)^{2}}}{Q_{1}^{(1)^{2}} Q_{1}^{(2)^{2}}}-\frac{45 Q_{1}^{(3)^{2}}}{2 Q_{1}^{(1)^{4}} Q_{1}^{(2)}} \\
c_{3,2}^{(2)}= & \frac{-13 Q_{1}^{(3)}}{Q_{1}^{(1)^{3}}}+\frac{2 Q_{1}^{(3)}}{Q_{1}^{(1)} Q_{1}^{(2)}}+\frac{24 Q_{1}^{(2)} Q_{1}^{(3)}}{Q_{1}^{(1)^{5}}}-\frac{9 Q_{1}^{(3)^{2}}}{Q_{1}^{(1)^{4}} Q_{1}^{(2)}} . \tag{5.5}
\end{align*}
$$

$s l(4)$ case

$$
\begin{align*}
& c_{1,0}^{(1)}=\frac{2 Q_{1}^{(2)}}{Q_{1}^{(1)^{2}}} \\
& c_{2,0}^{(1)}=\frac{3 Q_{1}^{(2)}}{Q_{1}^{(1)^{2}}}-\frac{6 Q_{1}^{(2)^{2}}}{Q_{1}^{(1)^{4}}}+\frac{3 Q_{1}^{(3)}}{Q_{1}^{(1)^{3}}} \\
& c_{2,1}^{(1)}=\frac{Q_{1}^{(2)}}{Q_{1}^{(1)^{2}}}-\frac{4 Q_{1}^{(2)^{2}}}{Q_{1}^{(1)^{4}}}+\frac{3 Q_{1}^{(3)}}{Q_{1}^{(1)^{3}}} \\
& c_{3,0}^{(1)}=\frac{10 Q_{1}^{(2)}}{3 Q_{1}^{(1)^{2}}}-\frac{18 Q_{1}^{(2)^{2}}}{Q_{1}^{(1)^{4}}}+\frac{80 Q_{1}^{(2)^{3}}}{3 Q_{1}^{(1)^{6}}}+\frac{8 Q_{1}^{(3)}}{Q_{1}^{(1)^{3}}}-\frac{24 Q_{1}^{(2)} Q_{1}^{(3)}}{Q_{1}^{(1)^{5}}}+\frac{4 Q_{1}^{(4)}}{Q_{1}^{(1)^{4}}} \tag{5.6}\\
& c_{3,1}^{(1)}=\frac{3 Q_{1}^{(2)}}{Q_{1}^{(1)^{2}}}-\frac{22 Q_{1}^{(2)^{2}}}{Q_{1}^{(1)^{4}}}+\frac{40 Q_{1}^{(2)^{3}}}{Q_{1}^{(1)^{6}}}+\frac{13 Q_{1}^{(3)}}{Q_{1}^{(1)^{3}}}-\frac{42 Q_{1}^{(2)} Q_{1}^{(3)}}{Q_{1}^{(1)^{5}}}+\frac{8 Q_{1}^{(4)}}{Q_{1}^{(1)^{4}}} \\
& c_{3,2}^{(1)}=\frac{Q_{1}^{(2)}}{Q_{1}^{(1)^{2}}}-\frac{8 Q_{1}^{(2)^{2}}}{Q_{1}^{(1)^{4}}}+\frac{16 Q_{1}^{(2)^{3}}}{Q_{1}^{(1)^{6}}}+\frac{5 Q_{1}^{(3)}}{Q_{1}^{(1)^{3}}}-\frac{18 Q_{1}^{(2)} Q_{1}^{(3)}}{Q_{1}^{(1)^{5}}}+\frac{4 Q_{1}^{(4)}}{Q_{1}^{(1)^{4}}}
\end{align*}
$$

$c_{1,0}^{(2)}=\frac{3 Q_{1}^{(3)}}{Q_{1}^{(1)} Q_{1}^{(2)}}$

$$
c_{2,0}^{(2)}=\frac{-27 Q_{1}^{(3)}}{2 Q_{1}^{(1)^{3}}}+\frac{9 Q_{1}^{(3)}}{Q_{1}^{(1)} Q_{1}^{(2)}}-\frac{9 Q_{1}^{(3)^{2}}}{2 Q_{1}^{(1)^{2}} Q_{1}^{(2)^{2}}}+\frac{9 Q_{1}^{(4)}}{Q_{1}^{(1)^{2}} Q_{1}^{(2)}}
$$

$$
c_{2,1}^{(2)}=\frac{-6 Q_{1}^{(3)}}{Q_{1}^{(1)^{3}}}+\frac{2 Q_{1}^{(3)}}{Q_{1}^{(1)} Q_{1}^{(2)}}+\frac{4 Q_{1}^{(4)}}{Q_{1}^{(1)^{2}} Q_{1}^{(2)}}
$$

$$
c_{3,0}^{(2)}=\frac{-1377 Q_{1}^{(3)}}{16 Q_{1}^{(1)^{3}}}+\frac{171 Q_{1}^{(3)}}{8 Q_{1}^{(1)} Q_{1}^{(2)}}+\frac{243 Q_{1}^{(2)} Q_{1}^{(3)}}{2 Q_{1}^{(1)^{5}}}-\frac{27 Q_{1}^{(3)^{2}}}{Q_{1}^{(1)^{2}} Q_{1}^{(2)^{2}}}
$$

$$
-\frac{81 Q_{1}^{(3)^{2}}}{16 Q_{1}^{(1)^{4}} Q_{1}^{(2)}}+\frac{9 Q_{1}^{(3)^{3}}}{Q_{1}^{(1)^{3}} Q_{1}^{(2)^{3}}}-\frac{81 Q_{1}^{(4)}}{Q_{1}^{(1)^{4}}}+\frac{783 Q_{1}^{(4)}}{16 Q_{1}^{(1)^{2}} Q_{1}^{(2)}}-\frac{27 Q_{1}^{(3)} Q_{1}^{(4)}}{Q_{1}^{(1)^{3}} Q_{1}^{(2)^{2}}}
$$

Figure 4. Temperature dependence of the high-temperature expansion of the specific heat of order 8 for the $s l(3), J=1, \mu_{1}=h, \mu_{2}=0, \mu_{3}=-h$ case $(h=0$, smooth line; $h=2$, broken line; $h=4$, dotted line).

$$
\begin{align*}
c_{3,1}^{(2)}= & \frac{-135 Q_{1}^{(3)}}{2 Q_{1}^{(1)^{3}}}+\frac{12 Q_{1}^{(3)}}{Q_{1}^{(1)} Q_{1}^{(2)}}+\frac{108 Q_{1}^{(2)} Q_{1}^{(3)}}{Q_{1}^{(1)^{5}}}-\frac{6 Q_{1}^{(3)^{2}}}{Q_{1}^{(1)^{2}} Q_{1}^{(2)^{2}}} \\
& -\frac{45 Q_{1}^{(3)^{2}}}{2 Q_{1}^{(1)^{4}} Q_{1}^{(2)}}-\frac{72 Q_{1}^{(4)}}{Q_{1}^{(1)^{4}}}+\frac{75 Q_{1}^{(4)}}{2 Q_{1}^{(1)^{2}} Q_{1}^{(2)}}-\frac{12 Q_{1}^{(3)} Q_{1}^{(4)}}{Q_{1}^{(1)^{3}} Q_{1}^{(2)^{2}}} \\
c_{3,2}^{(2)}= & \frac{-13 Q_{1}^{(3)}}{Q_{1}^{(1)^{3}}}+\frac{2 Q_{1}^{(3)}}{Q_{1}^{(1)} Q_{1}^{(2)}}+\frac{24 Q_{1}^{(2)} Q_{1}^{(3)}}{Q_{1}^{(1)^{5}}}-\frac{9 Q_{1}^{(3)^{2}}}{Q_{1}^{(1)^{4}} Q_{1}^{(2)}} \\
& -\frac{16 Q_{1}^{(4)}}{Q_{1}^{(1)^{4}}}+\frac{7 Q_{1}^{(4)}}{Q_{1}^{(1)^{2}} Q_{1}^{(2)}} \tag{5.7}
\end{align*}
$$

$c_{1,0}^{(3)}=\frac{4 Q_{1}^{(4)}}{Q_{1}^{(1)} Q_{1}^{(3)}}$
$c_{2,0}^{(3)}=\frac{20 Q_{1}^{(4)}}{Q_{1}^{(1)} Q_{1}^{(3)}}-\frac{32 Q_{1}^{(2)} Q_{1}^{(4)}}{Q_{1}^{(1)^{3}} Q_{1}^{(3)}}-\frac{8 Q_{1}^{(4)^{2}}}{Q_{1}^{(1)^{2}} Q_{1}^{(3)^{2}}}$
$c_{2,1}^{(3)}=\frac{3 Q_{1}^{(4)}}{Q_{1}^{(1)} Q_{1}^{(3)}}-\frac{8 Q_{1}^{(2)} Q_{1}^{(4)}}{Q_{1}^{(1)^{3}} Q_{1}^{(3)}}$
$c_{3,0}^{(3)}=\frac{-192 Q_{1}^{(4)}}{Q_{1}^{(1)^{4}}}+\frac{248 Q_{1}^{(4)}}{3 Q_{1}^{(1)} Q_{1}^{(3)}}-\frac{352 Q_{1}^{(2)} Q_{1}^{(4)}}{Q_{1}^{(1)^{3}} Q_{1}^{(3)}}+\frac{512 Q_{1}^{(2)^{2}} Q_{1}^{(4)}}{Q_{1}^{(1)^{5}} Q_{1}^{(3)}}$
$-\frac{80 Q_{1}^{(4)^{2}}}{Q_{1}^{(1)^{2}} Q_{1}^{(3)^{2}}}+\frac{128 Q_{1}^{(2)} Q_{1}^{(4)^{2}}}{Q_{1}^{(1)^{4}} Q_{1}^{(3)^{2}}}+\frac{64 Q_{1}^{(4)^{3}}}{3 Q_{1}^{(1)^{3}} Q_{1}^{(3)^{3}}}$
$c_{3,1}^{(3)}=\frac{-96 Q_{1}^{(4)}}{Q_{1}^{(1)^{4}}}+\frac{30 Q_{1}^{(4)}}{Q_{1}^{(1)} Q_{1}^{(3)}}-\frac{160 Q_{1}^{(2)} Q_{1}^{(4)}}{Q_{1}^{(1)^{3}} Q_{1}^{(3)}}+\frac{256 Q_{1}^{(2)^{2}} Q_{1}^{(4)}}{Q_{1}^{(1)^{5}} Q_{1}^{(3)}}$

$$
\begin{gather*}
-\frac{12 Q_{1}^{(4)^{2}}}{Q_{1}^{(1)^{2}} Q_{1}^{(3)^{2}}}+\frac{32 Q_{1}^{(2)} Q_{1}^{(4)^{2}}}{Q_{1}^{(1)^{4}} Q_{1}^{(3)^{2}}} \\
c_{3,2}^{(3)}= \tag{5.8}\\
\frac{-12 Q_{1}^{(4)}}{Q_{1}^{(1)^{4}}}+\frac{3 Q_{1}^{(4)}}{Q_{1}^{(1)} Q_{1}^{(3)}}-\frac{18 Q_{1}^{(2)} Q_{1}^{(4)}}{Q_{1}^{(1)^{3}} Q_{1}^{(3)}}+\frac{32 Q_{1}^{(2)^{2}} Q_{1}^{(4)}}{Q_{1}^{(1)^{5}} Q_{1}^{(3)}} .
\end{gather*}
$$

When $Q_{1}^{(a)}$ are suitably chosen, equations (5.3) recover the known results [30]. We see that these coefficients are expressed in terms of the solutions of the Q-system (3.4). Thus, a solution of the T-system is given in terms of solutions of the Q-system. The T-system is a YangBaxterization of the Q-system. Thus, we may say that the degree of the expansion expresses the degree of a Yang-Baxterization. Using $\left\{b_{n}^{(a)}(0)\right\}$, we can calculate the free energy (4.8) and the specific heat $C=-T \frac{\partial^{2} f}{\partial T^{2}}$. We have plotted the high-temperature expansion of the specific heat for $s l(3)$ in figure 4 . For large T, this agrees with the result from another NLIE by Fujii and Klümper (see figure 4 in [18]). This indicates the validity of our new NLIE (4.7). We note that the high-temperature expansion for the $S U(n)$ Heisenberg model is briefly reported in [31] based on a completely different method.

6. Concluding remarks

In this paper, we have derived a system of NLIEs with a finite number of unknown functions, which describes the thermodynamics of the $s l(r+1)$ Uimin-Sutherland model. This type of NLIE for $s l(r+1)$ of arbitrary rank r is derived for the first time. In particular for $r=1$, our new NLIE (4.7) reduces to Takahashi's NLIE [19] for the $X X X$ spin chain. We clarify a relation between our new NLIEs (4.6) and (4.7) and the traditional TBA equations (3.11), (3.13) and (3.16), which are also derived from the T-system. The high-temperature expansion of the free energy is discussed, in which a solution of the T-system is given in terms of solutions of the Q-system. We expect that we can extend these results to other algebras by using the T-systems in [21, 32, 34-37, 23].

In [38], fugacity expansion formulae of the free energy for the $X X X$ spin chain up to an infinite order are derived from the string centre equation, and Takahashi's NLIE [19] is rederived from these formulae. This work may be viewed in part as a type of Yang-Baxterization of the results in [39] where power series formulae related to a formal completeness of the Bethe ansatz are derived from the string centre equation. We can also generally recover [40] the results in [39] from the Q-system. Starting from our new NLIE (4.7), we may derive expansion formulae similar to those in [38] for $s l(r+1)$ of arbitrary rank r, from which an idea toward a Yang-Baxterization of the results in [40] may be given, since our new NLIE is based on the T-system which is a Yang-Baxterization of the Q-system.

There are different types of NLIEs with finite numbers of unknown functions for algebras of arbitrary rank in rather different contexts [41, 42]. Their origins are related to Destri and de Vega's NLIE [43]. The derivation of analogous NLIEs from the QTM method and the study of the relation to our new NLIE deserve investigation.

Acknowledgment

The author is financially supported by the Inoue Foundation for Science.

References

[1] Takahashi M 1999 Thermodynamics of One-Dimensional Solvable Models (Cambridge: Cambridge University Press)
[2] Takahashi M 1971 Prog. Theor. Phys. 46 401-15
[3] Gaudin M 1971 Phys. Rev. Lett. 261301
[4] Jüttner G, Klümper A and Suzuki J 1998 Nucl. Phys. B 512 581-600
[5] Suzuki M 1985 Phys. Rev. B 31 2957-65
[6] Suzuki M and Inoue M 1987 Prog. Theor. Phys. 78 787-99
[7] Koma T 1987 Prog. Theor. Phys. 78 1213-8
[8] Suzuki J, Akutsu Y and Wadati M 1990 Japan Phys. Soc. Jpn. 59 2667-80
[9] Klümper A 1992 Ann. Phys. Lpz. 1 540-53
[10] Kuniba A, Sakai K and Suzuki J 1998 Nucl. Phys. B 525 597-626
[11] Sakai K and Tsuboi Z 2000 Int. J. Mod. Phys. A 15 2329-46 (Preprint math-ph/9912014)
[12] Tsuboi Z 2002 Int. J. Mod. Phys. A 17 2351-68 (Preprint cond-mat/0108358)
[13] Takahashi M, Shiroishi M and Klümper A 2001 J. Phys. A: Math. Gen. 34 L187-L194
[14] Klümper A 1993 Z. Phys. B 91 507-19
[15] Jüttner G and Klümper A 1997 Eur. Phys. Lett. 37 335-40
[16] Jüttner G, Klümper A and Suzuki J 1998 Nucl. Phys. B 522 471-502
[17] Suzuki J 1999 J. Phys. A: Math.Gen. 32 2341-59
[18] Fujii A and Klümper A 1999 Nucl. Phys. B 546 751-64
[19] Takahashi M 2001 Physics and Combinatorics ed A N Kirillov and N Liskova (Singapore: World Scientific) 299-304 (Preprint cond-mat/0010486)
[20] Klümper A and Pearce P 1992 Physica A 183 304-50
[21] Kuniba A, Nakanishi T and Suzuki J 1994 Int. J. Mod. Phys. A 9 5215-66
[22] Tsuboi Z 2002 Phys. Lett. B 544 222-30 (Preprint math-ph/0209024)
[23] Tsuboi Z 1999 J. Phys. A: Math. Gen. 32 7175-206
[24] Uimin G V 1970 JETP Lett. 12225
[25] Sutherland B 1975 Phys. Rev. B 12 3795-805
[26] Perk J H H and Schultz C L 1981 Phys. Lett. A 84 407-10
[27] Reshetikhin N Yu and Wiegmann P B 1987 Phys. Lett. B 189 125-31
[28] Kirillov A N and Reshetikhin N Yu 1990 J. Sov. Math. 52 3156-64
[29] Bazhanov V V and Reshetikhin N 1990 J. Phys. A: Math. Gen. 23 1477-92
[30] Shiroishi M and Takahashi M 2002 Phys. Rev. Lett. 89117201
[31] Fukushima N and Kuramoto Y 2002 J. Phys. Soc. Japan 71 1238-41
[32] Kuniba A and Suzuki J 1995 J. Phys. A: Math. Gen. 28 711-22
[33] Suzuki J 2000 J. Phys. A: Math. Gen. 33 3507-21
[34] Tsuboi Z 1997 J. Phys. A: Math. Gen. 30 7975-91
[35] Tsuboi Z 1998 Physica A 252 565-85
[36] Tsuboi Z 1998 J. Phys. A: Math. Gen. 31 5485-98
[37] Tsuboi Z 1999 Physica A 267 173-208
[38] Kato G and Wadati M 2002 J. Math. Phys. 43 5060-78
[39] Kuniba A and Nakanishi T 2000 Prog. Math. 191 185-216
[40] Kuniba A, Nakanishi T and Tsuboi Z 2002 Commun. Math. Phys. 227 155-90 (Preprint math.QA/0105145)
[41] Zinn-Justin P 1998 J. Phys. A: Math. Gen. 31 6747-70
[42] Dorey P, Dunning C and Tateo R 2000 J. Phys. A: Math. Gen. 33 8427-41
[43] Destri C and de Vega H J 1992 Phys. Rev. Lett. 69 2313-7

